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Feature selection is considered to be an important step in the analysis of
transcriptomes or gene expression data. Carrying out feature selection
reduces the curse of the dimensionality problem and improves the inter-
pretability of the problem. Numerous feature selection methods have
been proposed in the literature and these methods rank the genes in
order of their relative importance. However, most of these methods
determine the number of genes to be used in an arbitraryly or heuristic
fashion. Proposed is a theoretical way to determine the optimal number
of genes to be selected for a given task. This proposed strategy has been
applied on a number of gene expression datasets and promising results
have been obtained.

Introduction: Dimensionality reduction techniques are applied to high
dimensional problems for reducing computational complexity and
improving generalisation performance. Various dimensionality
reduction techniques can be grouped into two categories, namely,
feature extraction and feature selection. In feature extraction, feature
vectors are transformed into a parsimonious data space using a linear
or a nonlinear combination of feature vectors; and, in feature selection,
only some important features or attributes are retained and the remaining
features are discarded. Feature selection methods play a crucial role in
the identification of important genes responsible for characterising het-
erogeneity of human cancers.

Numerous feature selection methods have been proposed in the litera-
ture [1–4]. A comprehensive study can be found in [5]. These methods
explore the significance of genes and rank them based on a certain
feature score. Then, the top h genes are selected for downstream appli-
cations such as classification or clustering. Typically, the value of h is
selected arbitrarily which could lead to suboptimal performance. It
has also been observed in many situations that the chosen h is too
large and a much lower h would achieve similar or even better perform-
ance. In this Letter, we propose a theoretically-founded strategy to select
the optimal h that ensures minimum error rate with currently available
training data. Using several publicly available gene expression datasets,
we demonstrate the utility and performance of this strategy.
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Fig. 1 Illustration using two-class case

Proposed strategy: The mathematical notations used in this Letter are
defined as follows. Let = {x1, x2, . . . , xn} be a set of n training
vectors in a d-dimensional feature space. Let V ¼ {vl:i ¼ 1, 2, . . ., c}
be the finite set of c classes. Let i [ vn be the ith class set having ni

number of training samples and < . . . < ¼ . If the set
is processed through a feature selection method f (.) then it will give
feature subset ¼ f( ), where is in an h-dimensional feature space
(h , d ). To get the optimum value of h let us consider a two-class
case illustrated in Fig. 1. In the Figure the two oval shapes denote the
training sets and . A classifier is used to separate the feature
space into two regions namely R1 and R2. The probability of samples
correctly labelled is denoted by Pr1 and Pr2. The probability of
samples given a class is denoted by Px1 and Px2. The error of misclassi-
fication is denoted by 1. The probabilities Pr1, Pr2, Px1 and Px2 can be
given as

Pr1 =
∫

R,

p(x|v1)P(v1)dx, Pr2 =
∫

R,

p(x|v2)P(v2)dx
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Px1 =
∫
x,

p(x|v1)P(v1)dx, Px2 =
∫

x,

p(x|v2)P(v2)dx

where p(x|vi) is the class-conditional probability density function and
P(vi) is the a priori probability. The error 1 can be evaluated by

s = Px1 + Px2 − (Pr1 + Pr2).

It is obvious that error in different dimensional feature space would be
different.

Let the error be represented in h-dimensional feature space, and
extending it for a c class case, we get

1h = S
c
i=1

∫
Xi

p(x̂|vi)P(vi)dx̂ − S
c
i=1

∫
Ri

p(x̂|vi)P(vi)dx̂ (1)

where x̂ [ . If the features are ranked using the feature selection
method f (.) then the top h features can be used for which 1h is
minimum. For gene expression profile we can approximate (1) as

1h = S
c
i=1SXi p(X̂|vi)P(vi) − S

c
i=1SXi p(X̂|vi)P(vi) (2)

When 1h ¼ 0 at h, there will be no overlapping between samples of
different classes. In situations where the computation of class-
conditional probability density function is extremely tedious or not poss-
ible, a simpler error function could be applied:

1́h = n − S
c
i=1number of samples belongs to Ri given vi (3)

Table 1: DNA microarray gene expression datasets

Datasets Class
Number of

features
Number of

training samples
Number of

testing samples

SRBCT [6] 4 2308 63 20

MLL leukemia [7] 3 12582 57 15

Lung cancer [8] 2 12533 32 149
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Fig. 2 Selection process for optimum value of h

Table 2: Comparison of strategies on SRBCT dataset

Methods (feature selection + classification) Number of
selected genes

SRBCT (classification
accuracy on

test data) (%)

InfoGain + SVM 1 versus all [5] 150 95

One-dimensional SVM + SVM
naïve Bayes [5] 150 63

One-dimensional SVM + SVM
random [5] 150 91

One-dimensional SVM + SVM
exhaustive [5] 150 95

Proposed strategy + InfoGain + nearest
centroid classifier 37 100

Proposed strategy + InfoGain + nearest
neighbour classifier 37 100

Proposed strategy + SVM + nearest
centroid classifier 10 90

Proposed strategy + SVM + nearest
neighbour classifier 10 90

Results: Three DNA microarray gene expression datasets are used. The
datasets are described in Table 1. We have used the nearest centroid clas-
sifier (NCC) to find the regions Ri. The proposed strategy has been
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applied on two feature ranking methods, namely, information gain
(InfoGain) and SVM to rank the genes. The choosing of value h is illus-
trated in Fig. 2 on the SRBCT dataset. Here, the range for minimum and
stable error is between 37 and 63. Therefore, we selected h ¼ 37. The
classification accuracy of several methods has been compared in
Tables 2, 3 and 4 for SRBCT dataset, MLL Leukemia dataset and
Lung Cancer dataset, respectively. In all datasets, the proposed strategy
is able to achieve a test error rate at least equivalent to, if not better than,
current state-of-the-art methods. It is noteworthy that in one case the pro-
posed strategy achieves this good performance with up to 500 times less
features than other methods. Having a smaller subset of genes would
give biologists a better chance of finding and/or understanding path-
ways that are important in the disease.

Table 3: Comparison of strategies on MLL Leukemia dataset

Methods (feature selection + classification) Number of
selected genes

MLL leukemia
(classification accuracy

on test data) (%)

SVM + SVM random [5] 150 100

InfoGain + naïve Bayes [5] 150 54

One-dimensional SVM + SVM
random [5] 150 100

One-dimensional SVM + SVM
exhaustive [5] 150 100

Proposed strategy + InfoGain + nearest
centroid classifier 46 93.3

Proposed strategy + InfoGain + nearest
neighbour classifier 46 86.7

Proposed strategy + SVM + nearest
centroid classifier 37 93.3

Proposed strategy + SVM + nearest
neighbour classifier 37 100

Table 4: Comparison of strategies on Lung Cancer dataset

Methods (feature selection + classification) Number of
selected genes

Lung cancer
(classification accuracy

on test data) (%)

Discretisation + decision trees [9] 5365 93

Boosting [10] Unknown 81

Bagging [10] Unknown 88

RCBT [11] 10–40 98

Proposed strategy + InfoGain + nearest
centroid classifier 10 99.3

Proposed strategy + InfoGain + nearest
neighbour classifier 10 99.3

Proposed strategy + SVM + nearest
centroid classifier 12 98.7

Proposed strategy + SVM + nearest
neighbour classifier 12 100

Conclusion: We present a strategy for finding the minimum number of
genes from a gene expression dataset to achieve high classification
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accuracy. This strategy has a strong theoretical basis and displays prom-
ising results empirically.
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