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Mathematical modeling and simulation studies are playing an increasingly important role in

helping researchers elucidate how living organisms function in cells. In systems biology,

researchers typically tune many parameters manually to achieve simulation results that are

consistent with biological knowledge. This severely limits the size and complexity of simulation

models built. In order to break this limitation, we propose a computational framework to

automatically estimate kinetic parameters for a given network structure. We utilized an online

(on-the-fly) model checking technique (which saves resources compared to the offline approach),

with a quantitative modeling and simulation architecture named hybrid functional Petri net with

extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the

underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis

elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine

genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0,

together with parameter estimation, we ran 20-million simulation runs, and were able to locate

57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules

extracted from published biological articles without much manual intervention. To evaluate the

robustness of these 57 parameter sets, we run another 20 million simulation runs using different

magnitudes of noise. Our simulation results concluded that among these models, one model is the

most reasonable and robust simulation model owing to the high stability against these stochastic

noises. Our simulation results provide interesting biological findings which could be used for

future wet-lab experiments.

Introduction

Mathematical modeling and simulation studies are playing an

increasingly important role in helping researchers elucidate

how living organisms function in cells. So far, many formal

description methods on biological pathway modeling have

been made.1–4 Among them, Petri net and its related concepts

have been successfully applied in modeling a wide variety of

biological pathways (i.e. metabolic,5–7 signal transduction,8–13

gene regulatory networks,14,15 and cell–cell interactions16),17,18

and have succeeded in reproducing consistent time-series

profiles of biological substances such as the concentrations

of mRNA and protein by means of computer simulations.

Simulation studies on biological pathways provide great

insight into the understanding of complex regulatory mecha-

nisms in cells. Simulation models are usually governed by a

series of parameters, e.g., initial values, reaction speeds and

threshold values of cellular activities. Commonly, they are

carefully tuned by experts to fit the simulated elements with

observed in vivo/vitro experimental results. Numerous trial and

error operations are performed until appropriate parameters

for simulation are determined. However, this would be extremely

tedious if not impossible for simulation studies that are large

in scale and complexity.

Inspired by the work of applying a simulation-based model

checking approach to complex biological networks,16 we have

developed a computational framework by incorporating the
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above approach for automatically determining the kinetic

parameters in large-scale models instead of the conventional

hand tuning method based on biological knowledge. The

research of a model checking algorithm for temporal logic

was invented about thirty years ago, which is a powerful

technique that allows for the automatic verification of system

requirements.19–22 It is receiving more and more attention in

studying biological queries of cellular interaction networks.2,23–29

With the aid of model checking, one can obtain answers to

questions such as ‘‘Does this reaction always lead to the DNA

supercoiling after entering growth-phase?’’ and ‘‘What is the

probability that the expression of the gene g will be inhibited

by the protein P?’’

The simulation-based model checking approach is developed

from the original model checking algorithm, which is based on

the idea of the Monte Carlo sampling method, and analyzes

approximating results that are a subset of the finite/infinite

state space with stochastic simulations.16,30,31 In ref. 16, the

authors have applied this idea to the determination of the

vulval precursor cell (VPC) fate in Caenorhabditis elegans by

means of a large amount (480 000-run) of simulations. They

employed two major biological fate determination rules to

the VPC fate model with a high-level Petri net and simply

calculated the fitting score that is a percentage denoting the

coverage of predicted cell fate patterns. No temporal logic

theory was taken into account and the parameter assignment

of the model was manually decided over an approximate

period of six months. This prompts us to develop a more

efficient and reliable systematic framework to query dynamic

properties of interest as statements with formal verification

based on the model checking algorithm, and overcome limita-

tions in the kinetic parameter assignments.

The aim of this article is to propose a novel framework to

automatically estimate the kinetic parameters of a given model

or a model starting from scratch with the use of a model

checking technique incorporated with a quantitative modeling

and simulation architecture named hybrid functional Petri net

with extension (HFPNe). It is considered to be a great help in

facilitating the procedure of the conventional hand tuning

before performing the simulations, and is of great value to

obtain more accurate, confident executable simulation models,

eventually leading to better understanding of biological

pathways.

The paper is organized as follows. In Methods, we first

present a brief introduction of HFPNe. Then we introduce a

temporal logic, Probabilistic Linear-time Temporal Logic

(PLTL) and the implementation of MIRACH 1.0. We show

how biological questions can be translated into PLTL formulas

for querying the dynamical properties. In Results and discussion,

the applicability of the developed framework is demonstrated by

analyzing the quantitative dynamics of a large and complex

model of the neuronal cell fate decision model in C. elegans

(called the ASE model). This model extends the previous

HFPNe model32 by taking into account an additional zinc

finger regulator fozi-1 that functions in the nucleus of ASER

(right asymmetric gustatory neuron) to inhibit the expression

of the LIM homeobox gene lim-6.33 The software tool

Cell Illustrator
s

is used for modeling and simulation, where

the HFPNe was implemented.34 We demonstrate how our

computational framework is employed to estimate the kinetic

parameters with observable biological results, e.g. measured

fate markers’ expressions. We estimate different types of

parameters (parameters for one initial value, one reaction

speed and 21 threshold values) in the ASE simulation model.

Furthermore, we evaluate the robustness with respect to the

estimated parameters for the ASE simulation model, which

simultaneously contains deterministic, stochastic factors. We

discuss the simulation results in the presence of noise and

select the most robust and appropriate ASE simulation model.

Methods

Fig. 1a illustrates the schematic overview of Methods, along

with the short explanation with respect to the application of

the ASE model in C. elegans. Fig. 1b exhibits the flow chart of

the procedures shown in Fig. 1a. In brief, to derive final satisfied

parameter sets (rightmost block in Fig. 1a), the HFPNe model

and temporal logic rule sets describing biological queries

(leftmost two blocks in Fig. 1a) are required as inputs for

the model checker. With the repetition of the operations

(i.e. II–IV in Fig. 1) until the entire rule sets are satisfied,

resulting parameter sets can be eventually obtained for simula-

tion and further analysis. In this paper, our method is applied

to an updated ASE fate model in C. elegans. We extract and

translate 45 biological rules specifying dynamical properties

with temporal logic (PLTL). By combining the uses of our

online model checker (MIRACH 1.0) and a simple estimation

technique, 23 kinetic parameters contributing to the regula-

tion of forming alternative cell fates are estimated. Finally,

we obtain 57 satisfied parameter sets through 20 million-run

simulations (Note: the simulation engine is incorporated in

MIRACH 1.0.), and the simulation results of the corresponding

models possessing each of the above 57 parameter sets can

successfully conform to all 45 biological specifications.

Basic introduction into hybrid functional Petri net with

extension (HFPNe)

HFPNe is a mathematical tool for modeling and simulation of

biological networks.

HFPNe deals with three types of data—discrete, continuous

and generic—and is comprised of three types of elements—

entities, processes and connectors—whose symbols are illustrated

in Fig. 2a.

�A discrete entity holds an integer number of the content. A

continuous entity holds a real number as concentration of a

substance such as mRNA and protein. Usually, the value of a

discrete or continuous entity is limited to a non-negative one.

A generic entity can hold any kind of types including object,

e.g., the string of a nucleotide base sequence.

� A discrete process is the same notion as used in the

traditional discrete Petri net. A continuous process is used

to represent a biological reaction such as transcription and

translation, at which the reaction speed is assigned as a para-

meter. A generic process can deal with any kind of operations

(e.g., alternative splicing and frameshifting) to all types

of entities. Generic entity and process have been practically

applied for modeling and simulating more complicated
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biological processes, e.g., activities of enzymes for a multi-

modification protein.

� Connectors are classified into three types: normal, test and

inhibitory connectors. Normal connectors connect an entity to

a process or vice versa. Test or inhibitory connectors represent

a condition and are only directed from an entity to a process.

Each normal connector from an entity, a test connector, and

an inhibitory connector has a threshold by which the parameter

assigned to the process at its head is controlled. A normal

connector from an entity or a test connector (an inhibitory

connector) can participate in activating (repressing) a process

at its head, as far as the content of an entity at its tail is over

the threshold. For either of the test or inhibitory connectors,

no amount is consumed from an entity at its tail. Fig. 2b

illustrates above connection rules in HFPNe.

Owing to the versatility of HFPNe, it has been successfully

employed to develop and analyze complex biological networks.13,36

For example, Wu et al.13 applied HFPNe to model and

evaluate the dopamine signaling pathway accounting for

delays and noise in the system. Hawari and Mohamed-Hussein36

used HFPNe to model a metabolic pathway, namely the

terpenoid biosynthesis pathway. The model simulated meta-

bolite concentration changes over virtual simulation time

and observations correlated with known experimental data.

For more comprehensive description of HFPNe and its usage,

please see Nagasaki et al.34,35

Formulating biological queries in temporal logic

To verify user queries of a specified property by means of

model checking, several approaches of temporal logics have

been employed for model checking in biological pathway

models. The approaches are not restricted to the applica-

tion of basic Computation Tree Logic23,24 or Linear-time

Temporal Logic (LTL),29 and other more expressive temporal

logics, e.g., Alternative Temporal Logic,37 Continuous Time

Evolution Logic,12 and Probabilistic Bounded Linear Temporal

Logic,38 are also proposed and applied to diverse biological

systems.

In this article, we selected PLTL (Probabilistic Linear-time

Temporal Logic) for querying dynamic models of cellular

networks,31,39,40 which extends original LTL to a stochastic

setting with a probability operator and a filter criterion defining

the starting state where the property is satisfied. Delving into

further detail, we utilize PLTL on the architecture of HFPNe

dealing with both discrete and continuous events. Meanwhile,

we had developed a model checker, MIRACH 1.0, which

implements PLTL and its new extension, namely PLTLs

(Probabilistic Linear-time Temporal Logic with Statistics).41

Our model checker concurrently supports any model written

in commonly-used formats such as CSML (http://www.csml.

org) and SBML (http://sbml.org/). MIRACH is integrated

with a simulation engine, enabling efficient online (on-the-fly)

checking, and producing a definite and reliable (statistically

backed) result. Online model checking performs model checking

during the simulation run,12,42 whereas the offline model checking

approach needs to complete the simulation runs before the

checking, therefore the offline approach would be a waste of

CPU resources if the decision of validity or rejection for the

simulation run could be determined early in its execution.

Syntax of PLTL. The syntax of PLTL is defined in Table 1,

which is used to ask for the probability of user’s query via a

PLTL formulae c. In the LTL expression f{AP}, f will be

checked from the state that AP is satisfied rather than from the

default initial state, where AP is called atomic proposition

and takes a boolean domain. PLTL allows (i) LTL expression

Fig. 1 Schematic view of the Methods section. (a) Detailed procedures and the corresponding applications to an ASE fate model; (b) flow

diagram of operations shown in (a).
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to contain temporal operators, i.e., X, F, G, U, R. Five

temporal operators are used to describe the sequencing of

the states along the execution; and (ii) the usage of c without

probabilistic operators (i.e. simply in the form of LTL), which

is useful when the model is deterministic.

Semantics of PLTL. The semantics of PLTL is defined

over the finite sets of finite paths through system’s state space,

obtained by repeated simulation runs of HFPNe models.

The PLTL formula is built upon two components: probabilistic

operator and property LTL. For each simulation run, the LTL

expression is evaluated to a boolean truth value, and the

probability of the LTL statement holding true is calculated

based on the whole set of simulation results.

For the probability operator components, there are two

distinct operators: (i) is any inequality comparison of the

Table 1 Syntax of PLTL

c ::=

LTL ::= f{AP}|f
f ::= X f|G f|F f|f U f|f R f|f|f && f|f||f|f ) f|AP
AP ::= value comp value|valueboolean
Value ::= value op value|[variableName]|Functionnumeric|Integer|Real
Valueboolean ::= true|false|Functionboolean
Comp ::= ==|!=|Z |>|o|r
Op ::= +|�|*|/|^,
with A {o, r, >, Z }, x A [0, 1].

Fig. 2 (a) Basic HFPNe elements and biological icons in Cell Illustrator. (b) Connection rules (left side) and the corresponding network (right

side) in HFPNe. For instance, for the uppermost block labeled with ‘‘Connection from Entity to Process with Process connectors’’, the check-mark

denotes the availability connected from the corresponding entities to processes, e.g., only the generic process can be selected as the output

connected from a generic entity with a process connector.
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probability of the property LTL holding true, for example

PZ 0.5 (LTL); and (ii) P=? returns the value of the probability

of the property holding true. The semantics of the temporal

logic operators are described in Table 2. Concentrations of

biochemical species in the model are denoted by [variableName].

A special variable, [time], stands for the simulation time.

Due to the ability of PLTL, it is possible to define functions

of two different natures: functions that return a real number

and functions that return a boolean value. An example of the

real number function is d([variableName]) which returns the

subtracted value of [variableName] between time i and i � 1.

Note that, d([variableName]) equals zero at time point

zero. One example of a boolean function is similarAbsolute-

(value a, value b, value e), which returns true if |a � b| r e or
else it returns false. Please see MIRACH’s documentation for

details and examples on usage of implemented functions

(http://sourceforge.net/projects/mirach/).

Table 2 Semantics of temporal operators

Operator Meaning Explanation

X f Next time f must be true at the next time point.
G f Globally f must always be true.
F f Finally f must be true at least once.
f1 U f2 Until f1 must be true until f2 becomes true;

f2 must become true eventually.
f1 R f2 Release f2 must be true until and including the time

point f1 becomes true; if f2 never true,
f1 must always be true.

Fig. 3 Summary of the regulatory interactions that determine the ASEL/ASER fate. (a) Two ASE neurons. ASE senses different ions and

expresses distinct ASEL/ASER-specific terminal fate markers, encoded by gcy and flp family genes. Photomicrographs of ASEL/ASER-specific

gcy gene expressions in wild type are adapted fromHobert, 2006, Cold Spring Harbor Laboratory Pressr2006. (b) Biological diagram of the ASE

neuron fate decision pathway which takes into account an additional regulator, fozi-1 (highlighted) and fozi-1 related regulations. Broken line

denotes a partially penetrant defect in maintaining the left/right asymmetric expression of loop component.33 Genes in the inactive or active state

are shown in grey or black, respectively. Four regulatory factors lsy-6, cog-1, die-1 and mir-273 form a double-negative feedback loop (DNFL).

The expressions of flp-20/flp-4 and gcy-6/gcy-7 are ASEL-specific terminal fate markers, while the expressions of gcy-5/gcy-22 and hen-1 are used as

ASER fate markers.
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Application and results

To confirm the applicability of our developed framework, we

chose the HFPNe model of neuronal fate decision mechanisms

in C. elegans for the analysis. Fig. 3 illustrates the summary

and biological diagram of the mechanisms by considering a

new transcriptional factor, fozi-1 (highlighted in Fig. 3b) and

complicated regulations mediated by fozi-1.

Biological background and HFPNe modeling of an ASEL/R cell

fate regulatory network

Two gustatory neurons in C. elegans, ‘‘ASE left’’ (ASEL) and

‘‘ASE right’’ (ASER) are morphologically bilaterally symmetric,

but physically asymmetric in function and in the expression of

distinct ASEL/ASER-specific cell fate markers, including

specific subsets of guanylyl cyclase receptors, encoded by

GCY genes (e.g. gcy-5 and gcy-7), and FMRFamide-type

neuropeptides, encoded by FLP genes (e.g. flp-4). In adult

animals, the differences between cell fate markers are used to

discriminate ASEL or ASER cells. That is, gcy-6 and flp-4

are stereotypically expressed in the ASEL cell, whereas gcy-5

is expressed only in the ASER cell as shown in Fig. 3. The

left/right asymmetric fates develop from a precursor state in

which both ASE neurons have equivalent potentials to adopt

alternative cell fates.32,43,44 The ASE cell fate decision mecha-

nism between two alternative neuronal fates is controlled by a

complex gene regulatory network composed of microRNAs

(miRNAs) (e.g. lsy-6 and mir-273) and transcription factors

(e.g. cog-1, lim-6 and die-1). This mechanism diversifies

neuronal subclass specification (i.e. wild type and classes

I–IV, see Johnston et al., 2006, Fig. 4C) in the nervous system

of the nematode C. elegans.

In the ASE cell fate decision mechanism, a double-negative

feedback loop (DNFL) (Fig. 3b) constituted by the regulatory

factors lsy-6, cog-1, die-1 and mir-273 plays an important role

to provide the establishment and stabilization of the bi-stable

ASE system. In 2006, Johnston et al. isolated a mutant, fozi-1,

and it is characterized by de-repression of the ASEL fate in

ASER via genetic experiments. fozi-1 codes for a protein,

containing two Zn fingers and a single FH2 domain, that

functions in the nucleus of ASER to inhibit the expression of

LIM homeobox gene lim-6.33 In other words, fozi-1 genetically

interacts with a series of transcription factors and miRNAs to

repress expression of ASEL-specific effector genes in ASER to

adopt the terminally stable ASER cell fate.

In previous work we developed an HFPNe model (termed

‘‘Model2’’) that we extend here by updating the regulatory

interactions mediated by fozi-1. Fig. 4 exhibits our HFPNe

model of the ASE fate decision pathway in wild-type depicted

in Fig. 3, and the elements of HFPNe in Fig. 4 are changed to

biological icons in Cell Illustrator (on the right side of Fig. 2a).

Although these changes have no effect on mathematical

meaning, it is helpful for biologists to easily make and under-

stand the pathway models. Table 3 summarizes the biological

interpretation and references of each reaction used in this

study. Fig. 5 shows the schematic representation of the whole

HFPNe model that emulates nine genetic conditions including

not only wild-type but also the combinations of five mutants,

fozi-1(cc607), die-1(ot26), lsy-6(ot71), cog-1(sy607) and

lim-6(nr2073). The whole ASE model is composed of

474 entities, 1026 processes and 1620 connectors (totally 3327

components). The HFPNe model and related data files of

analyzing the ASE fate decision mechanism in C. elegans are

available at the website (http://www.csml.org/models/csml-mo

dels/ase-cell-fate-simulation/ASE2010/).

Parameter estimation coupled with the online model checking

approach

In the original model built by Saito et al.32 (i.e. Model1), no

kinetic parameters have been documented and measured in

any literature. The kinetic parameters are thus assigned

according to two simple principles: (i) the same speed mx � 0.1

(mx indicates the concentration of the substance) is used for

the regulations (i.e., translation, transcription of mRNA,

nuclear import and export); (ii) the threshold value of the

inhibitory connector is 0.1. Note that the transcription speed

of miRNA is tuned to mx � 0.01, and the threshold of

inhibitory connector from the miRNA is tuned to 0.125. We

here assign the kinetic parameters to updated processes and

inhibitory connectors in Model2 complying with the above

principles. In order to check constructed models (Model1 and

Model2) for consistency and correctness before starting

further analyses, in the next step we focus on model validation

by using the model checking approach. We thus establish a

temporal logic rule set for verification.

The temporal logic rule set includes 45 rules in total,

extracted from in vivo results with respect to the dynamic

behaviour of the ASE fate specification pathway. Forty-five

rules are formulated with PLTL subsequently as shown in

Table 4. For instance, as shown in Fig. 6a, Johnston et al.43

have suggested that ‘‘In wild type, the expression pattern of

mir-273 gene adopts L> R, L= R or Lo R’’. This biological

fact thus is translated into a PLTL syntax as given in Fig. 6b.

Note that the variable [thres_l] is used to denote a threshold

value that is close to zero; whereas [thres_h] is used to

discriminate the expression differences between ASEL and

ASER which is unambiguous when biologists say ‘‘L > R’’

or ‘‘L o R’’ in their community.

Table 5 shows the model checking results for Model1 and

Model2. We can see that there are two FALSEs and 14 SKIPs

of Model1. That is, Model1 cannot conform to the biological

criteria described in Rules 14 and 15, and SKIP occurred

because no information of the new factor fozi-1 was taken into

account. This implies that Model1 is relatively well tuned in

the previous work. However, after updating the information

of fozi-1 related interactions,Model2 can only be satisfied with

33 rules out of 45 (about 73% precision) with the same

parameter assignment principles defined in Model1. It is

obvious that current parameter assignment principles are not

suitable for further analysis and behaviour predictions and

should be improved to increase the correctness and confidence

of the model. Therefore, a new systematic approach is needed

to find out appropriate parameter assignments where the

HFPNe model will satisfy 45 specified rules.

In this study, 23 kinetic parameters involving one initial value,

one reaction rate and 21 threshold values of the regulatory

(i.e. inhibitory and associate) interactions are estimated using

D
ow

nl
oa

de
d 

on
 0

7 
A

pr
il 

20
11

Pu
bl

is
he

d 
on

 0
3 

M
ar

ch
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0M

B
00

25
3D

View Online

http://dx.doi.org/10.1039/c0mb00253d


This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst.

uniform distribution in the setting for range values summarized

in Table 6. Note that the scope (the column ‘‘Range values’’ in

Table 6) of the parameters for estimation is narrowed down by

repeating the operations of estimation and model checking. It

is observed that the models with parameter values beyond

the value ranges stated in Table 6, have high possibility of

violating some of these 45 rules.

Given reduced range values, we have tried matured

(20 000 000 run) simulation experiments for the parameter

estimations with the same model structure (i.e., Model2 with

the remaining kinetic parameters), the same procedures and

the same computational environment in order to find out

suitable model that could satisfy all 45 specifications.

Model selection with stochastic noise

Using the method mentioned in previous sections, we performed

the parameter estimations coupled with online model checking

for the ASE fate decision model. We obtained 57 kinetic

parameter sets out of 20 million-run simulations whose

respective model (summarized to ‘‘Model3’’) can satisfy all

the 45 rules. Although these simulation models can meet all

the specified biological criteria, we are interested to find an

adaptive model that is robust enough to resist the effects of

stochastic noise induced by the intrinsic stochasticity and

external perturbations.

We then carry out model selection based on the system’s

robustness under disturbances arising from noise. On account of

the stochasticity in a dynamic system, the software Cell Illustrator

facilitates the robustness analysis which can simultaneously

contain deterministic and stochastic components. We converted

the obtained 57 deterministic models to stochastic ones by adding

the function of log-normal distribution as a system noise equipped

in Cell Illustrator. Note that, 57 deterministic models are named

asModel3_1, Model3_2,. . ., Model3_57, respectively. Log-normal

Fig. 4 The HFPNe model of the ASE fate decision pathway in wild-type depicted in Fig. 3b. Biological meanings of processes P1,. . ., P36 are

summarized in Table 3. An additional label (C) or (N) is attached at the end of a substance name, when it happens to distinguish the location of the

substance in the cytoplasm or the nucleus. The entities’ IDs used for parameter estimation are indicated in blue.
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distribution is represented by LSMass(arg1,arg2), where arg1

stands for normal reaction speed without noise, and arg2 is the

standard deviation representing the strength of the noise. For each

estimated parameter (except e477 and e478, 21 parameters in total)

summarized in the first column of Table 6, five standard devia-

tions: 0.1, 0.2, 0.3, 0.4, and 0.5 are respectively utilized in order to

investigate and evaluate the effects of the system in terms of noise

magnitude. We assigned the log-normal distribution with five

standard deviations to each of the above 21 parameters in each

57 models. That is, the number of total models for evaluation is

5 � 21 � 57 = 5985. Moreover, 10000-run simulation experi-

ments for every 5985 stochastic models are executed to investigate

the behavioural variations against the 45 biological rules.

Results

File 1 (ESIw) shows the simulation results concerning the

effects with respect to 21 estimated parameters under different

standard deviations for 57 models by investigating 5985

stochastic models. File 2 (ESIw) exhibits the results evaluating
the fluctuations from the viewpoint of 21 estimated para-

meters. From the simulation results, we draw the following

conclusions: (Here we only show the results of Model3_14 in

Fig. 7 due to space constraints.)

(i) Model3_14 appears to be the most robust model compared

to the other 56 candidate models. Under different noise

strength levels, Model3_14 exhibits good robustness to the

Table 3 Biological interpretation of each reaction in Fig. 4 based on the literature. The processes {p1, p2,. . .,p27} are adapted from the original
model (Saito et al.32 called ‘‘Model1’’). Note that, the names of adapted processes are changed from ‘‘T’’ to ‘‘p’’ to make the paper to be more self-
contained. Nine fozi-1-related interactions are assigned to the processes {p28, p29,. . ., p36}, which are indicated by boldface. {d1, d2,. . .,d28}
represents natural degradations of attached substances

Process

Name Wet experiment results published in the literature Reaction type Ref.

p1 Transcription of the lsy-6 gene, produces lsy-6 pre-miRNA, and Drosha processing
yields the lsy-6 pre-miRNA

Transcription/Drosha processing 32

p2 The lsy-6 pre-miRNA is exported from the nucleus to the cytoplasm by exportin-5
and processed by the dicer (lsy-6 miRNA) to form miRNA

Nuclear export/Dicer processing

p3 cog-1 mRNA(C) is translated to cog-1(C) under the suppression by lsy-6 miRNA
(within RISC)

Translation/microRNA inhibition

p4 Transcription of cog-1 gene yields cog-1 mRNA Transcription
p5 cog-1 mRNA(N) is exported from the nucleus to the cytoplasm (cog-1 mRNA (C)) Nuclear export
p6 COG-1(C) is imported from the cytoplasm to the nucleus (COG-1(N)). Nuclear import
p7 COG-1(N) activates transcription of the cog-1 gene, producing cog-1 mRNA Transcription
p8 COG-1(N) activates the transcription of the mir-273 gene, producing the mir-273

pre-miRNA, and Drosha processing leads to the production of the mir-273
pre-miRNA

Transcription/Drosha processing

p9 Transcription of the mir-273 gene yields the mir-273 pre-miRNA, and Drosha
processing produces the mir-273 pre-miRNA

Transcription/Drosha processing

p10 mir-273 pre-miRNA is exported from the nucleus to the cytoplasm by exportin-5
and processed by the dicer (mir-273 miRNA) to yield miRNA

Nuclear export/dicer processing

p11 die-1mRNA(C) is translated to DIE-1(C) under suppression by themir-273miRNA
(within RISC)

Translation/microRNA inhibition

p12 Transcription of die-1 gene leads to the production of die-1 mRNA. Transcription
p13 die-1 mRNA(N) is exported from the nucleus to the cytoplasm (die-1 mRNA(C)) Nuclear export
p14 die-1(C) is imported from the cytoplasm to the nucleus (die-1(N)) Nuclear import
p15 die-1(N) activates the transcription of the lsy-6 gene, producing the lsy-6 pre-miRNA,

and Drosha processing leads to the production of the lsy-6 pre-miRNA
Transcription/Drosha processing

p16 The expression of lim-6(C) is activated by die-1(C) and suppressed by cog-1(C) Expression
p17 LIM-6(C) is imported from the cytoplasm to the nucleus (LIM-6(N)) Nuclear import
p18 LIM-6(N) activates the transcription of lsy-6 gene, producing lsy-6 pre-miRNA, and

Drosha processing leads to the production of lsy-6 pre-miRNA
Transcription/Drosha processing

p19 LIM-6(N) activates the transcription of die-1 gene, producing die-1 mRNA Transcription
p20 The expression of gcy-7 is activated by DIE-1 and suppressed by COG-1 Expression
p21 The expression of gcy-6 is activated by DIE-1 and suppressed by COG-1 Expression
p22/p23 LIM-6(C) suppresses the expression of gcy-5/gcy-22 gene Expression
p24/p25 LIM-6(C) activates the expression of flp-4/flp-20 gene Expression
p26 Protein LSY-2(C) is imported from the cytoplasm to the nucleus (LSY-2(N)). Expression
p27 LSY-2(N) activates transcription of gene lsy-6, producing lsy-6 pre-miRNA, and

the Drosha processes to produce lsy-6 pre-miRNA
Nuclear import

p28 Transcription of lim-6 gene which yields lim-6 mRNA Transcription/Drosha processing 43,44
p29 LIM-6(N) activates the transcription of lim-6 gene which produces lim-6 mRNA Transcription
p30 Transcription of fozi-1 gene which yields fozi-1 mRNA Transcription
p31 fozi-1 mRNA(N) is exported from the nucleus to the cytoplasm (fozi-1 mRNA (C)) Transcription
p32 lim-6 mRNA(N) is exported from the nucleus to the cytoplasm (lim-6 mRNA (C)) Nuclear export
p33 fozi-1 mRNA(C) is translated to FOZI-1(C) which is repressed by DIE-1(C) Nuclear export
p34 lim-6 mRNA(C) is translated to LIM-6(C) which is repressed by FOZI-1(C) Translation/inhibition
p35 DIE-1(C) activates the expression of flp-4/flp-20 gene Translation/inhibition
p36 DIE-1(C) represses the translation of hen-1 gene Translation/inhibition

d1–d28 Natural degradation of attached substances Degradation
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Fig. 5 Schematic representation of the whole HFPNe based ASE fate model underlying alternative fate decision mechanisms involving nine

genetic conditions that are shown on the left side. The figure with high resolution and the model are available at the website (http://www.csml.org/

models/csml-models/ase-cell-fate-simulation/ASE2010/). As for the label of each substance, the format is defined in the following order: (1) the

name of the substance, e.g., lsy-2, die-1 and cog-1; (2) ‘‘c’’ or ‘‘n’’ is used to indicate the location of the substance. ‘‘c’’ stands for cytoplasm

whereas ‘‘n’’ stands for nucleus; (3) ‘‘l’’ or ‘‘r’’ denotes ASEL or ASER neuron; (4) ‘‘wt’’ represents genetic condition ‘‘wild-type’’. Therefore, the

label ‘‘die1c_rsy607’’ could be read as ‘‘In cog-1(sy607) mutant animal, the protein encoded by the die-1 gene in the cytoplasm in the ASER

neuron’’.
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Table 4 Translation of extracted biological evidences into PLTL rules. 0=0: no expression; L > 0: exclusive expression in ASEL; L > R:
expression in ASEL is stronger than in ASER; L= R equal expression in ASEL and ASER; Lo R: expression in ASER is stronger than in ASEL;
0 o R: exclusive expression in ASER. [GENEc_lwt]: in wild type, expression of GENE in the cytoplasm in the ASEL neuron; for instance,
[die1n_rot71] represents the expression of die-1 gene in the nucleus in the ASER neuron of lsy-6(ot71) mutants

No.

Rules
Biological
evidencesTranslation

Rule 1 LSY-2 in the nucleus will never increase if it once begins to rise and fall. ref. 32
(d([lsy2n_lwt]) Z 0) U (G (d([lsy2n_lwt]) r 0))

Rule 2 There exist no expressions of ASEL/ASER-specific reporter genes (i.e., gcy-5, flp-4,gcy-6, hen-1) in ASER
neuron
X (similarAbsolute([gcy5_rwt], 0, [thres_h]) && similarAbsolute([flp4_rwt], 0, [thres_h]) &&
similarAbsolute([gcy6_rwt], 0, [thres_h]) && similarAbsolute([hen1_rwt], 0, [thres_h])) {[time] == 0}

Rule 3 LSY-2 in the cytoplasm keeps decreasing.
G (d ([lsy2c_lwt]) r 0)

Rule 4 After 250 time point, when the concentration of DIE-1 is greater than that of COG-1 in the nucleus,
the concentration of LSY-6 will be more than that of MIR-273 in the cytoplasm.
F ((([die1n_lwt] > [cog1n_lwt]) {[time] > 250}) && (([lsy6c_lwt] > [mir273c_lwt]) {[time] > 250}))

Rule 5 The concentration of LIM-6 in the nucleus when DIE-1 is greater than COG-1 in the nucleus is greater
than that of LIM-6 in the nucleus when DIE-1 is less than COG-1 in the nucleus.
F ([lim6n_lwt] > [lim6n_rwt]) {([time] > 250) && ([die1n_lwt] > [cog1n_lwt]) &&
([die1n_rwt] o [cog1n_rwt])}

Rule 6 If the concentration of LSY-2 in the cytoplasm of the initial state is larger than 0.5, the concentrations
of GCY-7 and FLP-4 are greater than those of GCY-5 and HEN-1 after 250 time point.
(([lsy2c_lwt] > 0.5) && [time] == 0) => F (([gcy6_lwt] > [gcy5_lwt]) && ([gcy6_lwt] >
[hen1_lwt]) && ([flp4_lwt] > [gcy5_lwt]) && ([flp4_lwt] > [hen1_lwt])) {[time] > 250}

Rule 7 In wild type, the expression pattern of mir-273 gene adopts L > R, L=R or L o R Fig. 2A of ref. 43
G ((([mir273n_lwt] + [mir273c_lwt]) > (([mir273n_rwt] + [mir273c_rwt]) + [thres_h])) J
similarAbsolute(([mir273n_lwt] + [mir273c_lwt]), ([mir273n_rwt] + [mir273c_rwt]), [thres_l]) J
((([mir273n_lwt] + [mir273c_lwt]) + [thres_h]) o ([mir273n_rwt] + [mir273c_rwt]))) {[time] > 250}

Rule 8 In lsy-6(ot71) mutants, the expression pattern of mir-273 gene adopts L > R, L = R or L o R
G ((([mir273n_lot71] + [mir273c_lot71]) > (([mir273n_rot71] + [mir273c_rot71]) + [thres_h])) J
similarAbsolute(([mir273n_lot71] + [mir273c_lot71]), ([mir273n_rot71] + [mir273c_rot71]), [thres_l]) J
((([mir273n_lot71] + [mir273c_lot71]) + [thres_h]) o ([mir273n_rot71] + [mir273c_rot71]))) {[time] > 250}

Rule 9 In cog-1(sy607) mutants, the expression pattern of mir-273 gene adopts L > R, L = R or L o R
G ((([mir273n_lsy607] + [mir273c_lsy607]) > (([mir273n_rsy607] + [mir273c_rsy607]) + [thres_h])) J similar-
Absolute(([mir273n_lsy607] + [mir273c_lsy607]), ([mir273n_rsy607] + [mir273c_rsy607]), [thres_l]) J
((([mir273n_lsy607] + [mir273c_lsy607]) + [thres_h]) o ([mir273n_rsy607] + [mir273c_rsy607]))) {[time] > 250}

Rule 10 In the wild type, the expression pattern of die-1 gene adopts L > R, L = R or L o R Fig. 2B of ref. 43
G ((([die1n_lwt] + [die1c_lwt]) > (([die1n_rwt] + [die1c_rwt]) + [thres_h])) J
(similarAbsolute(([die1n_lwt] + [die1c_lwt]), ([die1n_rwt] + [die1c_rwt]), [thres_l])) J ((([die1n_lwt] +
[die1c_lwt]) + [thres_h]) o ([die1n_rwt] + [die1c_rwt]))) {[time] > 250}

Rule 11 In die-1(ot26) mutants, the expression pattern of die-1 gene (ceh-36prom::gfp::die-1 30UTR) adopts
L > R, L = R or L o R
G ((([die1n_lot26] + [die1c_lot26]) > (([die1n_rot26] + [die1c_rot26]) + [thres_h])) J
(similarAbsolute(([die1n_lot26] + [die1c_lot26]), ([die1n_rot26] + [die1c_rot26]), [thres_l])) J
((([die1n_lot26] + [die1c_lot26]) + [thres_h]) o ([die1n_rot26] + [die1c_rot26]))) {[time] > 250}

Rule 12 In lsy-6(ot71) mutants, the expression pattern of die-1 gene (ceh-36prom::gfp::die-1 30UTR) adopts
L > R, L = R or L o R
G ((([die1n_lot71] + [die1c_lot71]) > (([die1n_rot71] + [die1c_rot71]) + [thres_h])) J
(similarAbsolute(([die1n_lot71] + [die1c_lot71]), ([die1n_rot71] + [die1c_rot71]),[thres_l])) J
((([die1n_lot71] + [die1c_lot71]) + [thres_h]) o ([die1n_rot71] + [die1c_rot71]))) {[time] > 250}

Rule 13 In cog-1(sy607) mutants, the expression pattern of die-1 gene (ceh-36prom::gfp::die-1 30UTR) adopts
L > R, L = R or L o R
G ((([die1n_lsy607] + [die1c_lsy607]) > (([die1n_rsy607] + [die1c_rsy607]) + [thres_h])) J
(similarAbsolute(([die1n_lsy607] + [die1c_lsy607]), ([die1n_rsy607] + [die1c_rsy607]), [thres_l])) J
((([die1n_lsy607] + [die1c_lsy607]) + [thres_h]) o ([die1n_rsy607] + [die1c_rsy607]))){[time] > 250}

Rule 14 In the wild type, the expression pattern of lsy-6 gene adopts 0=0 or L > 0 Fig. 2C of ref. 43;
Fig. 5D of ref. 33G ((similarAbsolute(([lsy6n_lwt] + [lsy6c_lwt]), 0, [thres_l]) && similarAbsolute(([lsy6n_rwt] + [lsy6c_rwt]),

0, [thres_l])) J ((([lsy6n_lwt] + [lsy6c_lwt]) > [thres_h]) && similarAbsolute(([lsy6n_rwt] + [lsy6c_rwt]), 0,
[thres_l]))) {[time] > 250}
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Table 4 (continued )

No.

Rules
Biological
evidencesTranslation

Rule 15 In die-1(ot26) mutants, the expression pattern of lsy-6 gene adopts 0=0 or L > 0 Fig. 2C of ref. 43
G ((similarAbsolute(([lsy6n_lot26] + [lsy6c_lot26]), 0, [thres_l]) && similarAbsolute(([lsy6n_rot26] +
[lsy6c_rot26]), 0, [thres_l])) J ((([lsy6n_lot26] + [lsy6c_lot26]) > [thres_h]) && similarAbsolute(([lsy6n_rot26] +
[lsy6c_rot26]), 0, [thres_l]))) {[time] > 250}

Rule 16 In lsy-6(ot71) mutants, the expression pattern of lsy-6 gene is 0=0
G (similarAbsolute(([lsy6n_lot71] + [lsy6c_lot71]), 0, [thres_l]) && similarAbsolute(([lsy6n_rot71] +
[lsy6c_rot71]), 0, [thres_l])){[time] > 250}

Rule 17 In cog-1(sy607) mutants, the expression pattern of lsy-6 gene adopts L > 0, L = R or 0 o R
G (((([lsy6n_lsy607] + [lsy6c_lsy607]) > [thres_h]) && similarAbsolute(([lsy6n_rsy607] + [lsy6c_rsy607]), 0,
[thres_l])) J (similarAbsolute(([lsy6n_lsy607] + [lsy6c_lsy607]), ([lsy6n_rsy607] + [lsy6c_rsy607]), [thres_l])
&& !(similarAbsolute(([lsy6n_rsy607] + [lsy6c_rsy607]), 0, [thres_l]))) J ((([lsy6n_rsy607] + [lsy6c_rsy607]) >
[thres_h]) && similarAbsolute(([lsy6n_lsy607] + [lsy6c_lsy607]), 0, [thres_l]))) {[time] > 250}

Rule 18 In the wild type, the expression pattern of lim-6 gene is L > 0 Fig. 3A of ref. 43;
Fig. 4A and 5B of
ref. 33

G((([lim6n_lwt] + [lim6c_lwt]) > [thres_h]) && (similarAbsolute(([lim6n_rwt] + [lim6c_rwt]), 0,
[thres_l]))) {[time] > 250}

Rule 19 In die-1(ot26) mutants, the expression pattern of lim-6 gene is 0=0 Fig. 3A of ref. 43;
Fig. 5B of ref. 33G (similarAbsolute(([lim6n_lot26] + [lim6c_lot26]), 0, [thres_l]) && similarAbsolute(([lim6n_rot26] +

[lim6c_rot26]), 0, [thres_l])) {[time] > 250}

Rule 20 In cog-1(sy607) mutants, the expression pattern of lim-6 gene is L = R Fig. 3A of ref. 43
G (similarAbsolute(([lim6n_lsy607] + [lim6c_lsy607]), ([lim6n_rsy607] + [lim6c_rsy607]), [thres_l]) &&
!(similarAbsolute(([lim6n_rsy607] + [lim6c_rsy607]), 0, [thres_l]))) {[time] > 250}

Rule 21 In die-1(ot26);cog-1(sy607) double mutants, the expression pattern of lim-6 gene is 0=0
G (similarAbsolute(([lim6n_lot26sy607] + [lim6c_lot26sy607]), 0, [thres_l]) &&
similarAbsolute(([lim6n_rot26sy607] + [lim6c_rot26sy607]), 0, [thres_l])) {[time] > 250}

Rule 22 In lsy-6(ot71) mutants, the expression pattern of lim-6 gene is 0=0 Fig. 3A of ref. 43;
Fig. 5B of ref. 33G (similarAbsolute(([lim6n_lot71] + [lim6c_lot71]), 0, [thres_l]) && similarAbsolute(([lim6n_rot71] +

[lim6c_rot71]), 0, [thres_l])) {[time] > 250}

Rule 23 In the wild type, the expression pattern of gcy-5 gene is 0 o R Fig. 3B of ref. 43;
Fig. 4B and D of
ref. 33

G (([gcy5_rwt] > [thres_h]) && similarAbsolute([gcy5_lwt], 0, [thres_l])) {[time] > 250}

Rule 24 In die-1(ot26) mutants, the expression pattern of gcy-5 gene is L = R Fig. 3B of ref. 43
G (similarAbsolute([gcy5_lot26], [gcy5_rot26], [thres_l]) && !(similarAbsolute([gcy5_rot26], 0,
[thres_l]))) {[time] > 250}

Rule 25 In lsy-6(ot71) mutants, the expression pattern of gcy-5 gene is L = R
G (similarAbsolute([gcy5_lot71], [gcy5_rot71], [thres_l]) && !(similarAbsolute([gcy5_rot71], 0, [thres_l])))
{[time] > 250}

Rule 26 There exist no expressions of ASEL/ASER-specific reporter genes (i.e., gcy-5, flp-4,gcy-6, hen-1) in ASEL neuron ref. 32
X (similarAbsolute([gcy5_lwt], 0, [thres_h]) && similarAbsolute([flp4_lwt], 0, [thres_h]) &&
similarAbsolute([gcy6_lwt], 0, [thres_h]) && similarAbsolute([hen1_lwt], 0, [thres_h])) {[time] == 0}

Rule 27 In the wild type, the expression pattern of gcy-6/gcy-7 gene is L > 0 Fig. 4A of ref. 33
G (([gcy6_lwt] > [thres_h]) && similarAbsolute([gcy6_rwt], 0, [thres_l])) {[time] > 250}

Rule 28 In fozi-1(cc607) mutants, the expression pattern of gcy-6/gcy-7 gene adopts L > R or L = R
G((([gcy6_lcc607] > ([gcy6_rcc607] + [thres_h])) && !(similarAbsolute([gcy6_rcc607], 0, [thres_l]))) J
(similarAbsolute([gcy6_lcc607], [gcy6_rcc607], [thres_l]) && !(similarAbsolute([gcy6_rcc607], 0,
[thres_l])))) {[time] > 250}

Rule 29 In the wild type, the expression pattern of flp-4 gene adopts 0=0 or L > 0
G ((similarAbsolute([flp4_lwt], 0, [thres_l]) && similarAbsolute([flp4_rwt], 0, [thres_l])) J (([flp4_lwt] >
[thres_h]) && similarAbsolute([flp4_rwt], 0, [thres_l]))) {[time] > 250}

Rule 30 In fozi-1(cc607) mutants, the expression pattern of flp-4 gene adopts L > R, L = R or L o R
G ((([flp4_lcc607] > ([flp4_rcc607] + [thres_h])) && !(similarAbsolute([flp4_rcc607], 0, [thres_l]))) J
(similarAbsolute([flp4_lcc607], [flp4_rcc607], [thres_l]) && !(similarAbsolute([flp4_rcc607], 0, [thres_l]))) J
((([flp4_lcc607] + [thres_h]) o [flp4_rcc607]) && !(similarAbsolute([flp4_lcc607], 0, [thres_l])))) {[time] > 250}

Rule 31 In the wild type, the expression pattern of hen-1 gene adopts 0=0 or 0 o R Fig. 4B of ref. 33
G ((similarAbsolute([hen1_lwt], 0, [thres_l]) && similarAbsolute([hen1_rwt], 0, [thres_l])) J (([hen1_rwt] >
[thres_h]) && similarAbsolute([hen1_lwt], 0, [thres_l]))) {[time] > 250}
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Table 4 (continued )

No.

Rules
Biological
evidencesTranslation

Rule 32 In fozi-1(cc607) mutants, the expression pattern of hen-1 gene adopts 0=0 or 0 o R
G ((similarAbsolute([hen1_lcc607], 0, [thres_l]) && similarAbsolute([hen1_rcc607], 0, [thres_l])) J
(([hen1_rcc607] > [thres_h]) && similarAbsolute([hen1_lcc607], 0, [thres_l]))) {[time] > 250}

Rule 33 In fozi-1(cc607) mutants, the expression pattern of gcy-5 gene adopts 0 o R
G (([gcy5_rcc607] > [thres_h]) && similarAbsolute([gcy5_lcc607], 0, [thres_l])) {[time] > 250}

Rule 34 In fozi-1(cc607) mutants, the expression pattern of lsy-6 gene adopts 0=0, L > 0, L > R, L = R, 0 o R Fig. 5D of ref. 33
G ((similarAbsolute(([lsy6n_lcc607] + [lsy6c_lcc607]), 0, [thres_l]) && similarAbsolute(([lsy6n_rcc607] +
[lsy6c_rcc607]), 0, [thres_l])) J ((([lsy6n_lcc607] + [lsy6c_lcc607]) > [thres_h]) &&
similarAbsolute(([lsy6n_rcc607] + [lsy6c_rcc607]), 0, [thres_l])) J ((([lsy6n_lcc607] + [lsy6c_lcc607]) >
(([lsy6n_rcc607] + [lsy6c_rcc607]) + [thres_h])) && !(similarAbsolute(([lsy6n_rcc607] + [lsy6c_rcc607]), 0,
[thres_l]))) J ((similarAbsolute(([lsy6n_lcc607] + [lsy6c_lcc607]), ([lsy6n_rcc607] + [lsy6c_rcc607]), [thres_l]) &&
!(similarAbsolute(([lsy6n_rcc607] + [lsy6c_rcc607]), 0, [thres_l])))) J ((([lsy6n_rcc607] + [lsy6c_rcc607]) >
[thres_h]) && similarAbsolute(([lsy6n_lcc607] + [lsy6c_lcc607]), 0, [thres_l]))) {[time] > 250}

Rule 35 In the wild type, the expression pattern of cog-1 gene adopts 0=0, L o R or 0 o R
G ((similarAbsolute(([cog1n_lwt] + [cog1c_lwt]), 0, [thres_l]) && similarAbsolute(([cog1n_rwt] +
[cog1c_rwt]), 0, [thres_l])) J (((([cog1n_lwt] + [cog1c_lwt]) + [thres_h]) o ([cog1n_rwt] + [cog1c_rwt])) &&
!(similarAbsolute(([cog1n_lwt] + [cog1c_lwt]), 0, [thres_l]))) J ((([cog1n_rwt] + [cog1c_rwt]) > [thres_h]) &&
similarAbsolute(([cog1n_lwt] + [cog1c_lwt]), 0, [thres_l]))) {[time] > 250}

Rule 36 In fozi-1(cc607) mutants, the expression pattern of cog-1 gene adopts 0=0 or 0 o R
G ((similarAbsolute(([cog1n_lcc607] + [cog1c_lcc607]), 0, [thres_l]) && similarAbsolute(([cog1n_rcc607] +
[cog1c_rcc607]), 0, [thres_l])) J ((([cog1n_rcc607] + [cog1c_rcc607]) > [thres_h]) &&
similarAbsolute(([cog1n_lcc607] + [cog1c_lcc607]), 0, [thres_l]))) {[time] > 250}

Rule 37 In the wild type, the expression pattern of fozi-1 gene adopts 0=0, L > R, L = R or L o R Fig. 5A of ref. 33
G ((similarAbsolute([fozi1_lwt], 0, [thres_l]) && similarAbsolute([fozi1_rwt], 0, [thres_l])) J ([fozi1_lwt] >
([fozi1_rwt] + [thres_h])) J (similarAbsolute([fozi1_lwt], [fozi1_rwt], [thres_l]) &&
!(similarAbsolute([fozi1_lwt], 0, [thres_l]))) J (([fozi1_lwt] + [thres_h]) o [fozi1_rwt])) {[time] > 250}

Rule 38 In die-1(ot26) mutants, the expression pattern of fozi-1 gene adopts L > R, L = R or L o R
G (([fozi1_lot26] > ([fozi1_rot26] + [thres_h])) J (similarAbsolute([fozi1_lot26], [fozi1_rot26], [thres_l]) &&
!(similarAbsolute([fozi1_lot26], 0, [thres_l]))) J (([fozi1_lot26] + [thres_h]) o [fozi1_rot26])) {[time] > 250}

Rule 39 In lsy-6(ot71) mutants, the expression pattern of fozi-1 gene adopts L > R, L = R or L o R
G (([fozi1_lot71] > ([fozi1_rot71] + [thres_h])) J (similarAbsolute([fozi1_lot71], [fozi1_rot71], [thres_l]) &&
!(similarAbsolute([fozi1_rot71], 0, [thres_l]))) J (([fozi1_lot71] + [thres_h]) o [fozi1_rot71])) {[time] > 250}

Rule 40 In cog-1(sy607) mutants, the expression pattern of fozi-1 gene adopts 0=0, L > R, L = R or L o R
G ((similarAbsolute([fozi1_lsy607], 0, [thres_l]) && similarAbsolute([fozi1_rsy607], 0, [thres_l])) J ([fozi1_lsy607] >
([fozi1_rsy607] + [thres_h])) J (similarAbsolute([fozi1_lsy607], [fozi1_rsy607], [thres_l]) && !(similarAbsolute([-
fozi1_rsy607], 0, [thres_l]))) J (([fozi1_lsy607] + [thres_h]) o [fozi1_rsy607])) {[time] > 250}

Rule 41 In lim-6(nr2073) mutants, the expression pattern of fozi-1 gene adopts L = R or L o R
G ((similarAbsolute([fozi1_lnr2073], [fozi1_rnr2073], [thres_l]) && !(similarAbsolute([fozi1_lnr2073], 0,
[thres_l]))) J (([fozi1_lnr2073] + [thres_h]) o [fozi1_rnr2073])) {[time] > 250}

Rule 42 In fozi-1(ot61);lsy-6(ot71) double mutants, the expression pattern of lim-6 gene adopts L = R Fig. 5B of ref. 33
G ((similarAbsolute(([lim6n_lot61ot71] + [lim6c_lot61ot71]), ([lim6n_rot61ot71] + [lim6c_rot61ot71]),
[thres_l]) && !(similarAbsolute(([lim6n_rot61ot71] + [lim6c_rot61ot71]), 0, [thres_l])))) {[time] > 250}

Rule 43 In die-1(ot26);fozi-1(ot61) double mutants, the expression pattern of lim-6 gene adopts L = R
G (similarAbsolute(([lim6n_lot26ot61] + [lim6c_lot26ot61]), ([lim6n_rot26ot61] + [lim6c_rot26ot61]),
[thres_l]) && !(similarAbsolute(([lim6n_rot26ot61] + [lim6c_rot26ot61]), 0, [thres_l]))) {[time] > 250}

Rule 44 In fozi-1(ot61) mutants, the expression pattern of lim-6 gene adopts L > R or L = R
G(((([lim6n_lcc607] + [lim6c_lcc607]) > (([lim6n_rcc607] + [lim6c_rcc607]) + [thres_h])) &&
!(similarAbsolute(([lim6n_rcc607] + [lim6c_rcc607]), 0, [thres_l]))) J ((similarAbsolute(([lim6n_lcc607] +
[lim6c_lcc607]), ([lim6n_rcc607] + [lim6c_rcc607]), [thres_l])) && !(similarAbsolute(([lim6n_rcc607] +
[lim6c_rcc607]), 0, [thres_l])))) {[time] > 250}

Rule 45 In lim-6(nr2073) mutants, the expression pattern of gcy-5 gene adopts L = R, L o R or 0 o R Fig. 4D of ref. 33
G ((similarAbsolute([gcy5_lnr2073], [gcy5_rnr2073], [thres_l]) && !(similarAbsolute([gcy5_rnr2073],0,
[thres_l]))) J ((([gcy5_lnr2073] + [thres_h]) o [gcy5_rnr2073]) && !(similarAbsolute([gcy5_lnr2073], 0 ,
[thres_l]))) J (([gcy5_rnr2073] > [thres_h]) && similarAbsolute([gcy5_lnr2073], 0, [thres_l]))) {[time] > 250}
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stochastic noise with respect to 21 estimated parameters.

We observe that 13 parameters (i.e., e29, e30, e31, e33, e34, e35,

e37, e38, e39, e40, e41, e481, e482) can conform to 45 biological

criteria for the entire simulation runs even against the highest

standard deviation value;

(ii) For Model3_14, the entity e484 is highly unstable but

still possesses a high score of satisfied rule numbers. It is likely

that such entity storing the reaction rate of fozi-1 is important

to the regulation of ASE fate decision.

Finally, we count the number of satisfied rules of five

standard deviations and calculate their average values for

57 models with respect to 21 parameters. From the resulting

plot shown in Fig. 8, we conclude that:

(i) the average values of e7 and e9 are significantly unstable

against the noise strengths. These two parameters are the

threshold values of inhibitory regulations induced from two

miRNAs (lsy-6 miRNA and mir-273 miRNA). It can be

considered that the regulations caused by the miRNAs

are essential to the regulation of forming alternative cell fates;

(ii) the input (e7) and the output regulation (e40) of the

double-negative feedback loop constituted by lsy-6, cog-1,

die-1 and mir-273 are easy to be in an unstable condition by

the perturbations;

(iii) the initial value of lsy-6 (e13) is a sensitive factor in spite

of its low concentration compared to [lsy2c];

(iv) the inhibitory regulations from [die1c] to [fozi1] (e29)

and from [fozi1] to [lim6c2] (e481) also have surprising fluctua-

tions, and it generates the following view that these regulations

are maybe closely linked to the ASEL/ASER development.

Discussions

Data assimilation

When constructing a simulation model of biological pathways,

we usually tune the unknown kinetic parameters manually so

as to fit the observed data. Obviously, the hand tuning

approach has limitations in terms of the size of the network

and labor time. To extend the capability of the simula-

tion model, Nagasaki et al. have proposed the so-called

data assimilation (DA) approach.45 Their DA framework

enables users to handle both the model construction and the

parameter tuning within statistical inferences, and establishes

a link between the HFPNe simulation model and observed

data, e.g., microarray gene expression data45 or time series

proteomic data.46,47 Although this approach has succeeded in

constructing simulation models of circadian rhythm in mouse45

and epidermal growth factor receptor signal transduction

pathway model (EGFR model),46,47 it would be impossible

for statistical inferences because of the difficulty of providing

time-course data compulsively involving successive time points

Fig. 6 PLTL statement formulated from observed biological results. (a) The asymmetric expression of mir-273prom::gfp in wild type (see Fig. 2A of

ref. ref. 43), The National Academy of Sciences of the USA r2005. (b) Biological result in a PLTL syntax.

Table 5 Summary of verifying three simulation models against 45
rules given in Table 4. SKIP: Skipped due to missing substances not
found in the model; T: True; F: False

No.
Model1

(Saito et al. 2005)
Model2

(Extended Model1) Model3

Rule 1 T T T
Rule 2 T T T
Rule 3 T T T
Rule 4 T T T
Rule 5 T F T
Rule 6 T T T
Rule 7 T T T
Rule 8 T T T
Rule 9 T T T
Rule 10 T T T
Rule 11 T T T
Rule 12 T T T
Rule 13 T T T
Rule 14 F F T
Rule 15 F F T
Rule 16 T T T
Rule 17 T T T
Rule 18 T F T
Rule 19 T T T
Rule 20 T T T
Rule 21 T T T
Rule 22 T T T
Rule 23 T F T
Rule 24 T T T
Rule 25 T T T
Rule 26 T T T
Rule 27 T F T
Rule 28 SKIP F T
Rule 29 T F T
Rule 30 SKIP T T
Rule 31 T T T
Rule 32 SKIP T T
Rule 33 SKIP F T
Rule 34 SKIP T T
Rule 35 T T T
Rule 36 SKIP T T
Rule 37 SKIP T T
Rule 38 SKIP F T
Rule 39 SKIP T T
Rule 40 SKIP T T
Rule 41 SKIP T T
Rule 42 SKIP F T
Rule 43 SKIP F T
Rule 44 SKIP T T
Rule 45 T T T

TRUE 29 33 45
FALSE 2 12 0
SKIP 14 0 0
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(at least 10–20 time points) by biological experiments. That is,

for a small time-course data set, including for example 2 or

3 time points, DA does not work effectively. The response to

this difficulty is the use of model checking, as the model

checking approach is not restricted to the completeness and

continuousness of the observed time-course data or quantified

dynamic profile due to the expressive power of temporal logic

for formal verification.

Related researches

We have shown here the combination of our online model

checker MIRACH and parameter estimation method on the

Table 6 Summary of range values for parameter estimation. Please refer to the legend of Fig. 5 for the notation of the substance in the brackets.
The entities used for parameter estimation are indicated in blue in Fig. 4 for quick reference

Entity in model Name Type Range values

e7 Threshold value of the inhibition from [lsy6c] to [cog1c] Threshold value 0–0.25
e11 Threshold value of the inhibition from [die1c] to [gcy5] Threshold value 0–0.35
e13 Initial value of [lsy6n] Initial value 0–0.02
e28 Threshold value of the inhibition from [lim6c] to [gcy5] Threshold value 0–0.7
e29 Threshold value of the inhibition from [die1c] to [fozi1] Threshold value 0–0.26
e30 Threshold value of the inhibition from [fozi1] to [lim6c1] Threshold value 0–0.55
e31 Threshold value of the inhibition from [fozi1] to [gcy6] Threshold value 0–0.55
e32 Threshold value of the inhibition from [die1c]to [hen1] Threshold value 0–0.2
e33 Threshold value of the association from [lsy2n] to [lsy6n] Threshold value 0–0.1
e34 Threshold value of the association from [die1n] to [lsy6n] Threshold value 0–0.1
e35 Threshold value of the association from [lim6n] to [lsy6n] Threshold value 0–0.1
e36 Threshold value of the association from [lim6n] to [lim6mRNA] Threshold value 0–0.1
e37 Threshold value of the association from [die1c] to [lim6c] Threshold value 0–0.1
e38 Threshold value of the association from [die1c] to[flp4] Threshold value 0–0.1
e39 Threshold value of the association from [die1c] to [gcy6] Threshold value 0–0.1
e40 Threshold value of the association from [cog1n] to [mir273n] Threshold value 0–0.1
e41 Threshold value of the association from [cog1n] to [cog1mRNA] Threshold value 0-0.1
e9 Threshold value of the inhibition from [mir273c] to [die1c] Threshold value 0–0.25
e481 Threshold value of the inhibition from [fozi1] to [lim6c2] Threshold value 0–0.55
e482 Threshold value of the association from [lim6c] to [flp4] Threshold value 0–0.1
e477 High threshold value Threshold value 0–0.1
e478 Low threshold value Threshold value 0–0.5
e484 Transcription speed of fozi-1 Reaction rate 0–0.25

Fig. 7 The plots regarding simulation results of Model3_14 under five standard deviations of 21 parameters. x-Axis denotes the strength of noise

from 0.1 to 0.5; y-axis is the number of satisfied rules.
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class of HFPNe. It affords us with plausible and robust

simulation models to aid us in understanding system mecha-

nisms. Donaldson and Gilbert have developed a computational

system MC2(GA),40 which incorporates a model checker

called MC2(PLTLc)39 supporting another temporal logic

called probabilistic LTL with numerical constrains (PLTLc)

coupled with a genetic algorithm for parameter estimation.

MC2(PLTLc) is based on the offline model checking approach

and did not use any statistics to compute returned results’

confidence whereas it is realized in MIRACH although it is not

demonstrated in this case study. As previously mentioned, offline

model checking would be a waste of CPU resource if the decision

of validity or rejection for the simulation run could be determined

early in its execution. In ref. 40, when offline model checking is

coupled with the genetic algorithm to do parameter estimation,

the total number of simulation runs would increase significantly

because of increasing parameters to record and longer running

time resulting from every model at each generation/iteration. For

more detailed comparisons, please see Koh et al.41

On the other hand, Heiner et al.31 have applied simulative

model checking of PLTL to a Petri net class, i.e., extended

stochastic Petri nets, but parameter estimation has not been

taken into account.

Conclusions

This paper describes a systematic framework to automatically

estimate kinetic parameters of a given model or a model

starting from scratch by applying an online model checking

technique supported by temporal logic PLTL and its extension

to a well-founded Petri net class (i.e., HFPNe), and a simple

yet sufficient parameter estimation method. Its main contribu-

tions lie, firstly, in building a quantitative ASE fate model in

C. elegans with 3327 components emulating nine genetic

conditions. This model extends a previous model of Saito

et al.32 by taking into account a newly identified transcrip-

tion factor fozi-1. Secondly, we have extracted 45 biological

properties in total underlying dynamic behaviours about ASE

fate determination from observed known data which are later

translated into PLTL formulas for the formal verification. In

this study, the utilization of a probability operator has not

been given in demonstrating the applicability to an ASE fate

Fig. 8 The average values of 57 stochastic models for each 21 estimated parameter. Note that each average value (i.e. each point in the chart) is

calculated by adding together the satisfied rule number of five standard deviations for each parameter and each model.
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model. Nevertheless, our online model checker MIRACH

supports PLTL and its extension in statistic settings. Thirdly,

we have conducted a large number of simulations (20 million-run)

to estimate 23 kinetic parameters contributing to the regula-

tion of forming alternative cell fates, and obtained 57 parameter

sets whose models can conform to the entire 45 specifications

for further simulation analysis. Finally, we have evaluated

the correctness and robustness of these 57 models by adding

noise of different magnitudes into the models. One simulation

model is concluded to be the most reasonable and robust

owing to the high stability under the disturbance. We also

have discussed the results and summarized several plausible

explanations.

As far as we know, this is the first attempt that connects

a model checking approach with a parameter estimation

technique to a high-level Petri net class for biological path-

ways. We focus here on the establishment of the systematic

framework combining these two methods and briefly adopted

a uniform distribution for parameter estimation, which allows

other more accurate estimation methods to be used as well.
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